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Population dynamics with and without selection

Andrzej P&alski and Katarzyna Sznajd-Weron
Institute of Theoretical Physics, University of Wroctaw, Plac M. Borna 9, 50-204 Wroctaw, Poland
(Received 5 June 2000; published 20 February 2001

A model describing population dynamics is presented. We study the effect of selection pressure and in-
breeding on the time evolution of the population and the chances of survival. We find that the selection is in
general beneficial, enabling survival of a population whose size is declining. Inbreeding reduces the survival
chances since it leads to clustering of individuals. We have also found, in agreement with biological data, that
there is a threshold value of the initial size of the population, as well as of the habitat, below which the
population will almost certainly become extinct. We present analytical and computer simulation approaches.
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[. INTRODUCTION population[18]? (4) What is the role of inbreedinpl4]?
In the present paper we shall address the above questions

There are many models describing evolution of biologicalusing mostly a microscopic model solved by computer simu-
populations. Some of them came from theoretical physicistéations. In some cases we shall present analytical results also.
and are based on the concept of self-organized criticality The paper is organized as follows. In Sec. Il we present
[1-3], the Penna mode[4,5], or adapting populations the model. Section Ill contains analytical results; data from
[6,7,9. In [1-3] the stress is on showing that closed System§imulatipns are given in Sec. IV and Sec. V contains final
subject to well defined and simple rules can exhibit complexconclusions.
behavior, interpreted sometimes as the mass extinction of the
species. The Penna model tries to explain how genetic dis- Il. MODEL
eases coded in the genotype manifest themselves during the
individual's growth, how they are transmitted to the off- We consider a squareXL lattice with hard boundary
spring, and how they influence the population dynamics. Irconditions. No more than one individual may occupy a lat-
the third series of papers the general goal was to see how tliige site. Although there are no sexes in our model the breed-
genetic composition of a population influenced the fate of théng requires two parents. We shall call the first onfather
population when for some reason the conditions of livingand the second oneraother In order to procreate an indi-
changed. In all these papers the basic entity was an indMidual (fathe) must move to an adjacent empty site and find
vidual. It is still debated whether the fundamental blocks ofa partner(mothej in the nearest neighborhood of the new
evolution are individuals or rather populatiof0]. In [8]  site. The moves and search follow the “blind ant” rule, i.e.,
we considered a metapopulation, where the basic unit is e choice of direction is made only once. If the attempt is
population(a demé. We investigated how the interactions unsuccessful there is not a second one. Once the partner is
among populations influence the evolution of the metapopufound, the pair produces three offspring and the parents die.
lation. This is a dynamics with nonoverlapping generations.

There are of course numerous models of population dy- Eachith individual is characterized by its genotyfg,
namics constructed by biologists and mathematicians. Fawhich in our model is represented as a double st(imgp
reviews, see, e.gf11-13. Of the many questions asked by gamete} of L sites (loci). At each locus there might be
biologists regarding population dynamics some have not yegither a zero or a 1. Zero corresponds to a recessive and 1 to
been answered in a satisfactory way. In general, the bioloa dominant allele. Similar representations of a multilocus
gists’ models are based on differential equations for globagenotypes have already been introduced in, EZ¢p,15. We
variables; hence they belong to the class of mean-field-lik@ssume total domination of an allele denoted by 1; thus the
approaches. Some exceptions [dré,15, where microscopic  phenotypeF;={F!,F2,... FC'} of theith individual is con-
models are solved via computer simulations. Although thestructed from the genotype in the following way. If at a
analytic solutions are important, they often neglect the finecertain locus there are two zeré®cessive homozygote at
details, which may sometimes be crucial. It is therefore goodhis locug then we put zero at the corresponding locus of the
policy to start from a microscopic model and establish whichphenotype. Otherwis¢dominant homozygote or heterozy-
details are essential to understanding macroscopic regulariote we put a 1. Hence the phenotype of each individual is
ties[13]. a string, also ofLs loci, of zeros and 1§7]. For example

The questions frequently discussed by biologists using théL ;= 10),
mean-field approach include the followin@l) Is there a
critical concentration of a population, below which the popu- 111000110
lation has a low chance of survivfl6—18? (2) Is there a ,={mg,
direct relation between survival probability for a population
and the size of the habitdaR0]? (3) What is the role of
natural selection? In particular, can it “save” a doomed F;=1110011110.
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The offspring’s genotype is constructed in the following effective number of newborn babies. When inbreeding is ab-
way. Two strings of the mother’s genotype are broken at thesent, the sites for the babies are chosen randomly in the
same random position. The pieces are joined across to foravhole lattice.
two female gametes. The same process occurs with the fa-
ther's genotype. Finally, one of the female and one of the 1. ANALYTICAL RESULTS
male gametes are randomly chosen to form the genotype of
the baby. From the genotype the phenotype is constructed Let us start with no selection pressure and no inbreeding.
along the steps explained above. This procedure is repeatdde assume here periodic boundary conditions. The concen-
independently for all three offspring. tration of individuals at time is c(t). We want to find out

At the beginning of our simulations the individuals are whether the population will survive starting from an arbitrary
randomly distributed over the lattice and their genotypes aréow initial concentration, or whether, as we suspect, there is
random sequences of zeros and 1s. All external factors a® threshold value. We want also to determine the lowest
modeled here by the optimal phenotypeOr  survival probability below which the population will die out.
:{01,02“_’0;@} [7,9,18, which we take as a set of all 1s. In the model we have two processes that can change the

Hence a 1 in anindividual phenotype could be callecgaod populatior) size. In the mean-fielq approximgtion they h_ave
gene and a zero dad geneThe optimal phenotype remains the followmg values: death of an individual with pr_obablhty
constant in time, which corresponds to constant environment ~ P; @nd birth of three offspring and death of their parents
tal and climate conditions. The choice of all 1s as the optimal’ (1) @n individual will survive with probabilityp, (2) will
phenotype is, to some extent, arbitrary. However a zero €N move with probability +c(t), and(3) will then find a
the phenotype is more restrictive than a 1, since the former jgartner to mate with probabilityc(t) (for a square lattice
realized by just one combination of the alleles, and the latter 1h€ conditions for mating and producing offspring can
by three combinations. Therefore an optimal phenotype cortherefore t_Je written as _the following dynamic rule for the
taining, e.g., as many zeros as 1s would lead to more frefOncentratiorc(t+1) at imet+1:

guent extinction of the populatiori49].

We shall consider here two cases—when the population is c(t+1)=c(t)+c(t)] - E pc(t) + § pc(t)—(1-p)
subject to natural selection and when selection does not 4 4 '
work. The selection pressure is realized in the following 3
way. After an individual at sité is selected and before it is
permitted to move, its survival probability is checked. TheSince all offspring are located randomly in the latticeo

probability of survivalp; (one may also call it théitnesg is ~ inbreeding and the parents die, the mean-field approxima-
defined as follows: tion should give nearly the exact result. The fixed pouits

are given by the set of equations

1
pi=-— >, OkeFl, (1) c*=0, 4
Lei=1
i i §*1—*—1— =0 (5)
where we have introduced the operation e: zPc (1=¢c*)=(1-p)=0.
1 if a=b The solutionc* =0 is valid for every value of the survival
asb= 0 otherwise (2 probability p, but of course this solution is not interesting.

For p<i2~0.84 this is the only solution; hence below the

) o threshold valug* = 15 the population has no chance of sur-
Such a survival probability is the rate of agreement of the,4. For p>1¢ there are two additional fixed points
individual phenotype with the optimal one. An individual v

having the same phenotype as the optimal onephasl. 1 2
When we consider dynamics without selection pressure, c’l"2=§ p13— \/K (6)
each individual has the same chance of surviving. Hence, P
instead of calculating; for every member of the population
we take a constant survival probabilitg). where
In the following we shall also discuss the role of inbreed-
ing. It is realized by putting two offspring on the dead par- A=3p
ents’ sites and the third one in the site occupied by the father
before he moved. Clearly the three sites are nearest neigh-
bors and there is a significant chance that in the future the The resulting phase diagram is shown in Fig. 1. Apart
offspring will mate and the progeny will receive genes com-from the line of stable fixed points® =0, there are two lines
ing from two genetically closely related parents. Hence theof fixed pointsc*. The lower is an unstable onghe so-
genetic diversity of the population will be reduced. Anothercalled MVP—minimum viable population below which the
effect of the inbreeding in this model is to diminish the num-population dies and above which it tends to the upper
ber of empty sites in the neighborhood. This reduces théstable branch of fixed pointsknown in biology as thear-

19 )
6P 1 (7)
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FIG. 3. Time evolution of population with selection and without
. inbreeding taken from Eq(8) for several initial values ot(0);
INg. p(0)=0.75.

FIG. 1. Phase diagrat@nalytica) without selection or inbreed-

rying capacity. The existence of three steady stateso average, growing with time. We assume therefore thist

stable an(;i bong. UlﬂS'Fabng population dynamics has been ,q constant but is growing with time as a logistic function
suggested by biologis{21]. with the rater. Then[denotingc(t+1) by ¢’, p(t+1) by

We have not found oscillating solutions here. They were_, ;
present and discussed in a similar mode]28]. P, ¢(t) by ¢, andp(t) by p], instead of Eq(2) we get the

; . set of iteration equations
From Eg.(2) we can also get the time evolution for the d
populations starting from several initial concentratic(8),

as shown in Fig. 2. Clearly there are two asymptotic states c'=c+c gpc(l—c)—(l—p) ,

[e.g., forp=0.85,c()=0 andc(«)~0.62]. The threshold

initial concentration separating the two states(fier the , ®)
value p=0.85 assumed herabout 0.38. All the curves are p'=p+rp(l-p),

clearly monotonic, i.e., a population with declining concen-_ . . i . :
tration is doomed. This is indeed what has been observed bWhICh can be solved numerically; the time evolution of the

biologists[18,16] B/opulanon concentration is shown in Fig. 3. The pattern is

We investigate the role of selection by using a mean1®V quite different. The curves are nonmonotonic, i.e., se-

field-like approach. Its basic effect is an improvement of th lection can save a doomed populati@nfact noticed also in

adaptation(or fitness. Hence the survival probability is, on e[ls])’ f|n'al concentrations are much hlgher, and even a popu-
lation with a very low initial concentration has a chance to

] survive.
In the approach presented above all individual features of
0.9 1 the members of the population are missing. We have been
08 | mimicking the selection rather than modeling it along the

lines presented in Sec. Il.
One should note that adaptation, which may also be called

Sosl . fitness, depends on the phenotype only, since the selection in
o / our model acts via the phenotype. As the exact relation be-

G0.5 tween a genotype and a phenotype is yet unknown, we took
§°-4 the simplest, biologically reasonable one. Genotype driven

selection, via, e.g., diseases, is consideref28] or in the
Penna mode({see[5]).

IV. COMPUTER SIMULATIONS

To account for the detailed features of the individuals,
and, in particular, to determine the time dependence of the
survival probability, we have to turn to computer simula-

FIG. 2. Time evolution of population without selection or in- tions. In this approach we shall consider four cases: with and
breeding taken from Eq3) for several initial values of(0); p  without selection and with and without inbreeding. In the
=0.85. simulations we use “hard” boundary conditions, i.e., if an

0 50 _ 100 150
time
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100 e - —————— TABLE Il. Model without selection, with inbreedingy=0.87,
g0l c(0)=0.15.
801 : L K (carrying capacity Survival chance
<)
& 70t 1 25 0.717 0.02
3 eol | 30 0.737 0.11
(&)
s 40 0.723 0.43
5 501 T 50 0.730 0.71
T 40 ] 70 0.738 0.94
>
S sof
(7] .
20} 1 =0.84,L =50, the chances for survival are less then 2%. As
shown in Fig. 4, with increasing(0) the chances grow very
101 y fast.
0, 5 We have found therefore a feature observed in nature

[21]—that populations inhabiting a larger territory have a
greater chance of survival. However, this is true only when

FIG. 4. Percentage of populations that survived for the modethe survival probability is slightly above the threshold value.
without selection or inbreeding arm=0.84. If the survival probability is much larger thast the depen-

dence of the extinction rate on the size of the habitat disap-

individual is at the edge of the lattice and chooses the diregpears(see an example in Tablg. IAlthough populations liv-
tion that would take it outside the lattice, the move is noting in a small territory have a weaker chance to survive,
realized. those that do reach the carrying capacity of the habitat much
faster. Generally, processes occurring in small populations
are much more violent.

A. No selection and no inbreeding
There are the following parameters of the model: size of B. No selection, with inbreeding

the habitat(la?t.ice) L, initi.al. concentrationc(0), and sur- Here also we have found that there is a threshold vafue
V'V.al probability p.  Individuals are selected, mqved, .of the survival probability, which also depends on the size of
paired, and produce progeny according to the rules given 'the habitat. We have again the island population effect, i.e.,

sec. Il . . . . o that the survival chances of the population increase with the
According to our simulations there is a critical value of _. f the habi Tabl
*~0.82 below which no population has a chance to sur>%€ 2 the habitatsee Table ). . -
Sive I.:or ~b* there is a threshold value for the initial As before, the chances of survival depend on the initial
conéentrai)ion‘)(minimum viable population in biological concentration of the populatidisee Fig. 5 and they clearly
terms below which a population VSiIIpbecome extinct A?bove grow fast with increasing(0). However, we did not ob-
pop : serve stabilization of the survival. Even populations that after

the threshold value, as in the analytic results, the concentre%’,-0 Monte Carlo stepéVICS) showed over 90% chances of
tion grows 10 a steady stalé(carrying capacity of the habi- survival were declining in size. Placing progeny on the

tat). The value ofK does not depend oh. If we defined
p* as that probability at which the population has at least

100 : :
90% chance of survivalas did Shaffer[16]) we would
* inh i ; 90} —— ¢(0)=0.15
get p* =0.84, which is exactly what we got from analytical ¢(0)=0.1
calculations. Such a very good agreement follows from g5 c(O):O.125'
taking, after Shafferp*=90%. For other definitions of = e
p* we can expect good agreement also. The survival> 70
probability, however, depends crucially on the initial size & so}
(concentration of the population. Forc(0)=0.23 andp S 50
8 gob
[3]
TABLE I. Model without selection and inbreeding,=0.87, ‘_;’ 401
¢(0)=0.175. g g0l
7]
L K (carrying capacity Survival chance 20
10 0.717 0.04 10
20 0.737 0.11 0 . . . .
0 0.5 1 1.5 2 25
30 0.723 0.12 104 time
50 0.730 0.10
100 0.738 0.09 FIG. 5. Percentage of populations that survived for the model

without selection, with inbreeding, anz=0.87.
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FIG. 6. Spatial distribution of individualéright) for the model ~FIG- 7. Percentage of populations that survived for the case
without selection but with inbreeding. without selection with inbreeding.

neighboring sites led to clustering of individuals close to thecentration, the chances of survival grow with the size of the
habitat border, due to lack of symmetry thésee Fig. 6. In  habitat. We have found that the dependence of the survival
the case of no inbreeding the spatial distribution of a popuon the lattice size follows a power law:

lation showed no clustering. Because of the clustering effect )

caused by inbreeding, the situation is different for a popula- survivak-L*, ©)

tion that started from a low concentration, e.¢(0)=0.1,

and after some time reached the value of 0.2, and a popula-.

tion that started fronc(0)=0.2. The former is clustered, and With =1.66. _ _ . o
individuals have not much room for reproduction; hence the A feature not found in the dynamics without selection is
population may finally disappear. On the other hand the |atthe nonmonotonic character of the time dependence of con-
ter is more or less homogeneous, with enough sites arourfgéntration(Fig. 9). Such a pattern has been observed earlier
the occupied ones. Hence the population may survive. ThibY biologists[18] and is interpreted as the ability of selection

shows that in this model the history of the population plays 40 Save a population that without it would be extinct. We
role. observed an analogous phenomenon in Sec. Il of this paper,

where we presented a mean-field-like approach to our model
with survival probability increasing with time. The evolution

of mean fitness indeed shows a logistic growike the one
Now the individuals forming a population may adapt to considered in Sec. Il

the environment. Since we start from a random population
and the optimal phenotype is always taken as the sequence of
1s, the initial mean survival probability is always the same
(=~0.66. We observe, as in the case without selection, the 0.9t
existence of a minimum initial concentration below which
the population has essentially no chance of evolving. This
concentration, of course, depends on the size of the lattice 0.7r
For L=50 the results are plotted in Fig. 7. On small territo- _5 |
ries the dynamics of the evolution is, as in the case without®
selection, more rapidFig. 8. However, when the timeis ‘GE,O-S-
scaled by a factor of “?(7=100@/L?), the three curves g ,|
nearly overlap, showing a minimum a little below=1 and 8"
reaching a maximum at about=4. 0.3r
However, on very small latticed & 10) even a large ini- 0.2k
tial concentration does not guarantee survival—a populatior
with ¢(0)=0.35 has a 1% chance of surviving up to 10 01
KMCS. There is always a chance, although a slim one, thar ¢ - =
one population will reach a very high level of adaptation 0 2 4103 .8 8 10
very soon(generally after just 1 kMCE and then it will time
survive “forever,” since in our model there are no mutations  FIG. 8. Concentration as a function of time for the case with
or environmental changes. In general, for a given initial conselection and without inbreeding for several habitat sizes.

C. Selection, no inbreeding

0.8f
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1 100 T T r
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b= [72]
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§0.5 5
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FIG. 9. Concentration as a function of time for the case with FIG. 10. Dependence of the percentage of populations that sur-
selection and with inbreeding for lattice sike=50. vived on the initial concentration for the selection model with and
without inbreeding.

D. Selection and inbreeding . ) L . . .
out it and no selection with inbreeding and without it—we

Here also we have a minimum in the concentration versugaye found a critical value of the initial concentratidnVvpP)
time dependence characteristic for inbreeding, like that weelow which the population has a very small chance of sur-
have reported in Sec. Ill. Now, however, the minimum isyijyal. The same kind of behavior has been found in real
more pronounced. Before reaching the minimum the populapjp|ogical system$16—14.
tion is more or less randomly dispersed but after passing the The survival probability in our model depends also on the
minimum clustering occurs. We observe, as in the previougjze of the habitat. For quite small sizes no population can
cases, an increase of the survival chance with increasing inkyryive, irrespective of its initial concentration. In general
tial concentration. The growth, however, is much slower, ashe chances for survival grow with increasing size of the

shown in Fig. 10. habitat. This phenomenon is well known in biology and was

described by MacArthur and Wilson as long ago as 1967
V. CONCLUDING REMARKS [20].

We have presented a model describing population dvnam- The role of selection pressure is indeed crucial. Without
P g pop y selection, a population whose size is initially declining will

ics with and without selection pressure. The population Wa%urely die, because the concentration monotonically changes

reproducing in a quasisexual way, i.e., without differentiat-" .. “ = ~ =~ :

) . L with time in that case. In contrast, when a population evolves

ing the sexes but with the recombination of two parents. . I

Wherever it was possible we derived analytical results whichunder selection pressure, after an initial decrease of the con-
POS: : Y centration, it is possible, although not guaranteed, that the

agreed very well with those obtained from our computer

simulations. In the latter, individual features of the individu- phoeplrﬂii?]nﬁfr']zeesygsg\:\?avg s-m;\?vrgsir? asu;s f d”IbyTﬁE S”:;;eg:ﬁ ;':1
als were accounted for. In order to breed an individual musihat selection ca’n “save” the populati(')n .a fact also sug-y
first move and then find a partner in its nearest neighbo;gested by biologistEL8] '

h(r);(;tc-tla—h dee n:,:ggec:nc?;gzohg;nncﬁ mtmzirfa';ncgﬂ iﬁeﬁg\égl Inbreeding redu_ces the_po_pl_JIation’s chanc_e for surviving.
P © dep 9 Py P 9 leads to clustering of individuals, which in our model
the lattice for them. These two procedures permitted us t?n

S ) : . akes breeding more difficult. This again is a very well-
avoid invoking the Verhulst factor, which must be used in . : ; : :
continuous(with no lattice models[4,5] to account for the known biological fac{14]. Since we did not introduce any

limited resources of the habitat. Our approach is clearly anenwronmental changes, which can be easily done by chang-

: ) : ing the optimal phenotyp®¢ [7], we did not observe in the
improvement since the Verhulst factor is a very crude ap- . ) ANt
A i ’ . case of inbreeding extinction caused by decrease of the ge-
proximation (of the mean-field characteof the biological i di . 042
reality. netic diversity as, e.g., ifl24—-2§.
On the basis of the results presented above we may an-
swer now the questions posed in the Introduction. In all four

cases considered here—selection with inbreeding and with- The paper was supported by KBN Grant No. 2p03B 2718.
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