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Population dynamics with and without selection
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A model describing population dynamics is presented. We study the effect of selection pressure and in-
breeding on the time evolution of the population and the chances of survival. We find that the selection is in
general beneficial, enabling survival of a population whose size is declining. Inbreeding reduces the survival
chances since it leads to clustering of individuals. We have also found, in agreement with biological data, that
there is a threshold value of the initial size of the population, as well as of the habitat, below which the
population will almost certainly become extinct. We present analytical and computer simulation approaches.
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I. INTRODUCTION

There are many models describing evolution of biologi
populations. Some of them came from theoretical physic
and are based on the concept of self-organized critica
@1–3#, the Penna model@4,5#, or adapting populations
@6,7,9#. In @1–3# the stress is on showing that closed syste
subject to well defined and simple rules can exhibit comp
behavior, interpreted sometimes as the mass extinction o
species. The Penna model tries to explain how genetic
eases coded in the genotype manifest themselves durin
individual’s growth, how they are transmitted to the o
spring, and how they influence the population dynamics
the third series of papers the general goal was to see how
genetic composition of a population influenced the fate of
population when for some reason the conditions of livi
changed. In all these papers the basic entity was an i
vidual. It is still debated whether the fundamental blocks
evolution are individuals or rather populations@10#. In @8#
we considered a metapopulation, where the basic unit
population~a deme!. We investigated how the interaction
among populations influence the evolution of the metapo
lation.

There are of course numerous models of population
namics constructed by biologists and mathematicians.
reviews, see, e.g.,@11–13#. Of the many questions asked b
biologists regarding population dynamics some have not
been answered in a satisfactory way. In general, the bi
gists’ models are based on differential equations for glo
variables; hence they belong to the class of mean-field-
approaches. Some exceptions are@14,15#, where microscopic
models are solved via computer simulations. Although
analytic solutions are important, they often neglect the fi
details, which may sometimes be crucial. It is therefore go
policy to start from a microscopic model and establish wh
details are essential to understanding macroscopic regu
ties @13#.

The questions frequently discussed by biologists using
mean-field approach include the following.~1! Is there a
critical concentration of a population, below which the pop
lation has a low chance of survival@16–18#? ~2! Is there a
direct relation between survival probability for a populati
and the size of the habitat@20#? ~3! What is the role of
natural selection? In particular, can it ‘‘save’’ a doom
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population@18#? ~4! What is the role of inbreeding@14#?
In the present paper we shall address the above ques

using mostly a microscopic model solved by computer sim
lations. In some cases we shall present analytical results

The paper is organized as follows. In Sec. II we pres
the model. Section III contains analytical results; data fro
simulations are given in Sec. IV and Sec. V contains fi
conclusions.

II. MODEL

We consider a squareL3L lattice with hard boundary
conditions. No more than one individual may occupy a l
tice site. Although there are no sexes in our model the bre
ing requires two parents. We shall call the first one afather
and the second one amother. In order to procreate an indi
vidual ~father! must move to an adjacent empty site and fi
a partner~mother! in the nearest neighborhood of the ne
site. The moves and search follow the ‘‘blind ant’’ rule, i.e
the choice of direction is made only once. If the attempt
unsuccessful there is not a second one. Once the partn
found, the pair produces three offspring and the parents
This is a dynamics with nonoverlapping generations.

Each i th individual is characterized by its genotypeGi ,
which in our model is represented as a double string~two
gametes! of LG sites ~loci!. At each locus there might be
either a zero or a 1. Zero corresponds to a recessive and
a dominant allele. Similar representations of a multiloc
genotypes have already been introduced in, e.g.,@7,9,15#. We
assume total domination of an allele denoted by 1; thus
phenotypeFi5$Fi

1,Fi
2,...,Fi

GL% of the i th individual is con-
structed from the genotype in the following way. If at
certain locus there are two zeros~recessive homozygote a
this locus! then we put zero at the corresponding locus of
phenotype. Otherwise~dominant homozygote or heterozy
gote! we put a 1. Hence the phenotype of each individua
a string, also ofLG loci, of zeros and 1s@7#. For example
(LG510),

Gi5H 1110001100

0010011110J ,

Fi51110011110.
©2001 The American Physical Society03-1
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The offspring’s genotype is constructed in the followin
way. Two strings of the mother’s genotype are broken at
same random position. The pieces are joined across to f
two female gametes. The same process occurs with the
ther’s genotype. Finally, one of the female and one of
male gametes are randomly chosen to form the genotyp
the baby. From the genotype the phenotype is constru
along the steps explained above. This procedure is repe
independently for all three offspring.

At the beginning of our simulations the individuals a
randomly distributed over the lattice and their genotypes
random sequences of zeros and 1s. All external factors
modeled here by the optimal phenotypeOF

5$OF
1,OF

2,...,OF
LG% @7,9,18#, which we take as a set of all 1s

Hence, a 1 in anindividual phenotype could be called agood
gene, and a zero abad gene. The optimal phenotype remain
constant in time, which corresponds to constant environm
tal and climate conditions. The choice of all 1s as the optim
phenotype is, to some extent, arbitrary. However a zero
the phenotype is more restrictive than a 1, since the forme
realized by just one combination of the alleles, and the la
by three combinations. Therefore an optimal phenotype c
taining, e.g., as many zeros as 1s would lead to more
quent extinction of the populations@19#.

We shall consider here two cases—when the populatio
subject to natural selection and when selection does
work. The selection pressure is realized in the followi
way. After an individual at sitei is selected and before it i
permitted to move, its survival probability is checked. T
probability of survivalpi ~one may also call it thefitness! is
defined as follows:

pi5
1

LG
(
j 51

LG

OF
i •Fi

j , ~1!

where we have introduced the operation •:

a•b5H 1 if a5b

0 otherwise.
~2!

Such a survival probability is the rate of agreement of
individual phenotype with the optimal one. An individu
having the same phenotype as the optimal one haspi51.

When we consider dynamics without selection pressu
each individual has the same chance of surviving. Hen
instead of calculatingpi for every member of the populatio
we take a constant survival probability~p!.

In the following we shall also discuss the role of inbree
ing. It is realized by putting two offspring on the dead pa
ents’ sites and the third one in the site occupied by the fa
before he moved. Clearly the three sites are nearest ne
bors and there is a significant chance that in the future
offspring will mate and the progeny will receive genes co
ing from two genetically closely related parents. Hence
genetic diversity of the population will be reduced. Anoth
effect of the inbreeding in this model is to diminish the nu
ber of empty sites in the neighborhood. This reduces
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effective number of newborn babies. When inbreeding is
sent, the sites for the babies are chosen randomly in
whole lattice.

III. ANALYTICAL RESULTS

Let us start with no selection pressure and no inbreed
We assume here periodic boundary conditions. The conc
tration of individuals at timet is c(t). We want to find out
whether the population will survive starting from an arbitra
low initial concentration, or whether, as we suspect, there
a threshold value. We want also to determine the low
survival probability below which the population will die ou
In the model we have two processes that can change
population size. In the mean-field approximation they ha
the following values: death of an individual with probabilit
12p; and birth of three offspring and death of their paren
if ~1! an individual will survive with probabilityp, ~2! will
then move with probability 12c(t), and~3! will then find a
partner to mate with probability34 c(t) ~for a square lattice!.

The conditions for mating and producing offspring c
therefore be written as the following dynamic rule for th
concentrationc(t11) at timet11:

c~ t11!5c~ t !1c~ t !F2
3

4
pc2~ t !1

3

4
pc~ t !2~12p!G .

~3!

Since all offspring are located randomly in the lattice~no
inbreeding! and the parents die, the mean-field approxim
tion should give nearly the exact result. The fixed pointsc*
are given by the set of equations

c* 50, ~4!

3

4
pc* ~12c* !2~12p!50. ~5!

The solutionc* 50 is valid for every value of the surviva
probability p, but of course this solution is not interestin
For p, 16

19 '0.84 this is the only solution; hence below th
threshold valuep* 5 16

19 the population has no chance of su
vival. For p. 16

19 there are two additional fixed points

c1,2* 5
1

2
p7

2

3p
AD, ~6!

where

D53pS 19

16
p21D . ~7!

The resulting phase diagram is shown in Fig. 1. Ap
from the line of stable fixed pointsc* 50, there are two lines
of fixed pointsc* . The lower is an unstable one~the so-
called MVP—minimum viable population!, below which the
population dies and above which it tends to the up
~stable! branch of fixed points~known in biology as thecar-
3-2
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POPULATION DYNAMICS WITH AND WITHOUT SELECTION PHYSICAL REVIEW E63 031903
rying capacity!. The existence of three steady states~two
stable and one unstable! in population dynamics has bee
suggested by biologists@21#.

We have not found oscillating solutions here. They we
present and discussed in a similar model in@22#.

From Eq.~2! we can also get the time evolution for th
populations starting from several initial concentrationsc(0),
as shown in Fig. 2. Clearly there are two asymptotic sta
@e.g., forp50.85,c(`)50 andc(`)'0.62#. The threshold
initial concentration separating the two states is~for the
value p50.85 assumed here! about 0.38. All the curves ar
clearly monotonic, i.e., a population with declining conce
tration is doomed. This is indeed what has been observe
biologists@18,16#.

We investigate the role of selection by using a me
field-like approach. Its basic effect is an improvement of
adaptation~or fitness!. Hence the survival probability is, o

FIG. 1. Phase diagram~analytical! without selection or inbreed
ing.

FIG. 2. Time evolution of population without selection or in
breeding taken from Eq.~3! for several initial values ofc(0); p
50.85.
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average, growing with time. We assume therefore thatp is
not constant but is growing with time as a logistic functio
with the rater. Then @denotingc(t11) by c8, p(t11) by
p8, c(t) by c, andp(t) by p#, instead of Eq.~2! we get the
set of iteration equations

c85c1cF3

4
pc~12c!2~12p!G ,

~8!
p85p1rp~12p!,

which can be solved numerically; the time evolution of t
population concentration is shown in Fig. 3. The pattern
now quite different. The curves are nonmonotonic, i.e.,
lection can save a doomed population~a fact noticed also in
@18#!, final concentrations are much higher, and even a po
lation with a very low initial concentration has a chance
survive.

In the approach presented above all individual features
the members of the population are missing. We have b
mimicking the selection rather than modeling it along t
lines presented in Sec. II.

One should note that adaptation, which may also be ca
fitness, depends on the phenotype only, since the selectio
our model acts via the phenotype. As the exact relation
tween a genotype and a phenotype is yet unknown, we t
the simplest, biologically reasonable one. Genotype dri
selection, via, e.g., diseases, is considered in@23# or in the
Penna model~see@5#!.

IV. COMPUTER SIMULATIONS

To account for the detailed features of the individua
and, in particular, to determine the time dependence of
survival probability, we have to turn to computer simul
tions. In this approach we shall consider four cases: with
without selection and with and without inbreeding. In th
simulations we use ‘‘hard’’ boundary conditions, i.e., if a

FIG. 3. Time evolution of population with selection and witho
inbreeding taken from Eq.~8! for several initial values ofc(0);
p(0)50.75.
3-3
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ANDRZEJ PȨKALSKI AND KATARZYNA SZNAJD-WERON PHYSICAL REVIEW E 63 031903
individual is at the edge of the lattice and chooses the di
tion that would take it outside the lattice, the move is n
realized.

A. No selection and no inbreeding

There are the following parameters of the model: size
the habitat~lattice! L, initial concentrationc(0), and sur-
vival probability p. Individuals are selected, moved
paired, and produce progeny according to the rules give
Sec. II.

According to our simulations there is a critical value
p* '0.82 below which no population has a chance to s
vive. For p.p* there is a threshold value for the initia
concentration ~minimum viable population in biologica
terms! below which a population will become extinct. Abov
the threshold value, as in the analytic results, the concen
tion grows to a steady stateK ~carrying capacity of the habi
tat!. The value ofK does not depend onL. If we defined
p* as that probability at which the population has at le
90% chance of survival~as did Shaffer@16#! we would
get p* 50.84, which is exactly what we got from analytic
calculations. Such a very good agreement follows fr
taking, after Shaffer,p* 590%. For other definitions o
p* we can expect good agreement also. The surv
probability, however, depends crucially on the initial si
~concentration! of the population. Forc(0)50.23 and p

FIG. 4. Percentage of populations that survived for the mo
without selection or inbreeding andp50.84.

TABLE I. Model without selection and inbreeding,p50.87,
c(0)50.175.

L K ~carrying capacity! Survival chance

10 0.717 0.04
20 0.737 0.11
30 0.723 0.12
50 0.730 0.10

100 0.738 0.09
03190
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50.84,L550, the chances for survival are less then 2%.
shown in Fig. 4, with increasingc(0) the chances grow very
fast.

We have found therefore a feature observed in nat
@21#—that populations inhabiting a larger territory have
greater chance of survival. However, this is true only wh
the survival probability is slightly above the threshold valu
If the survival probability is much larger thanp* the depen-
dence of the extinction rate on the size of the habitat dis
pears~see an example in Table I!. Although populations liv-
ing in a small territory have a weaker chance to survi
those that do reach the carrying capacity of the habitat m
faster. Generally, processes occurring in small populati
are much more violent.

B. No selection, with inbreeding

Here also we have found that there is a threshold valuep*
of the survival probability, which also depends on the size
the habitat. We have again the island population effect,
that the survival chances of the population increase with
size of the habitat~see Table II!.

As before, the chances of survival depend on the ini
concentration of the population~see Fig. 5!, and they clearly
grow fast with increasingc(0). However, we did not ob-
serve stabilization of the survival. Even populations that a
30 Monte Carlo steps~MCS! showed over 90% chances o
survival were declining in size. Placing progeny on t

l

TABLE II. Model without selection, with inbreeding,p50.87,
c(0)50.15.

L K ~carrying capacity! Survival chance

25 0.717 0.02
30 0.737 0.11
40 0.723 0.43
50 0.730 0.71
70 0.738 0.94

FIG. 5. Percentage of populations that survived for the mo
without selection, with inbreeding, andp50.87.
3-4
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POPULATION DYNAMICS WITH AND WITHOUT SELECTION PHYSICAL REVIEW E63 031903
neighboring sites led to clustering of individuals close to
habitat border, due to lack of symmetry there~see Fig. 6!. In
the case of no inbreeding the spatial distribution of a po
lation showed no clustering. Because of the clustering ef
caused by inbreeding, the situation is different for a popu
tion that started from a low concentration, e.g.,c(0)50.1,
and after some time reached the value of 0.2, and a pop
tion that started fromc(0)50.2. The former is clustered, an
individuals have not much room for reproduction; hence
population may finally disappear. On the other hand the
ter is more or less homogeneous, with enough sites aro
the occupied ones. Hence the population may survive. T
shows that in this model the history of the population play
role.

C. Selection, no inbreeding

Now the individuals forming a population may adapt
the environment. Since we start from a random populat
and the optimal phenotype is always taken as the sequen
1s, the initial mean survival probability is always the sam
~'0.66!. We observe, as in the case without selection,
existence of a minimum initial concentration below whi
the population has essentially no chance of evolving. T
concentration, of course, depends on the size of the lat
For L550 the results are plotted in Fig. 7. On small territ
ries the dynamics of the evolution is, as in the case with
selection, more rapid~Fig. 8!. However, when the timet is
scaled by a factor ofL22(t51000t/L2), the three curves
nearly overlap, showing a minimum a little belowt51 and
reaching a maximum at aboutt54.

However, on very small lattices (L510) even a large ini-
tial concentration does not guarantee survival—a popula
with c(0)50.35 has a 1% chance of surviving up to 1
kMCS. There is always a chance, although a slim one,
one population will reach a very high level of adaptati
very soon~generally after just 1 kMCS!, and then it will
survive ‘‘forever,’’ since in our model there are no mutatio
or environmental changes. In general, for a given initial c

FIG. 6. Spatial distribution of individuals~bright! for the model
without selection but with inbreeding.
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centration, the chances of survival grow with the size of
habitat. We have found that the dependence of the surv
on the lattice size follows a power law:

survival;La, ~9!

with a51.66.
A feature not found in the dynamics without selection

the nonmonotonic character of the time dependence of c
centration~Fig. 9!. Such a pattern has been observed ear
by biologists@18# and is interpreted as the ability of selectio
to save a population that without it would be extinct. W
observed an analogous phenomenon in Sec. III of this pa
where we presented a mean-field-like approach to our mo
with survival probability increasing with time. The evolutio
of mean fitness indeed shows a logistic growth~like the one
considered in Sec. III!.

FIG. 7. Percentage of populations that survived for the c
without selection with inbreeding.

FIG. 8. Concentration as a function of time for the case w
selection and without inbreeding for several habitat sizes.
3-5
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ANDRZEJ PȨKALSKI AND KATARZYNA SZNAJD-WERON PHYSICAL REVIEW E 63 031903
D. Selection and inbreeding

Here also we have a minimum in the concentration ver
time dependence characteristic for inbreeding, like that
have reported in Sec. III. Now, however, the minimum
more pronounced. Before reaching the minimum the pop
tion is more or less randomly dispersed but after passing
minimum clustering occurs. We observe, as in the previ
cases, an increase of the survival chance with increasing
tial concentration. The growth, however, is much slower,
shown in Fig. 10.

V. CONCLUDING REMARKS

We have presented a model describing population dyn
ics with and without selection pressure. The population w
reproducing in a quasisexual way, i.e., without differenti
ing the sexes but with the recombination of two paren
Wherever it was possible we derived analytical results wh
agreed very well with those obtained from our compu
simulations. In the latter, individual features of the individ
als were accounted for. In order to breed an individual m
first move and then find a partner in its nearest neighb
hood. The number of progeny that a pair can effectiv
produce depends on the chance of finding an empty plac
the lattice for them. These two procedures permitted us
avoid invoking the Verhulst factor, which must be used
continuous~with no lattice! models@4,5# to account for the
limited resources of the habitat. Our approach is clearly
improvement since the Verhulst factor is a very crude
proximation ~of the mean-field character! of the biological
reality.

On the basis of the results presented above we may
swer now the questions posed in the Introduction. In all fo
cases considered here—selection with inbreeding and w

FIG. 9. Concentration as a function of time for the case w
selection and with inbreeding for lattice sizeL550.
03190
s
e

a-
e
s
i-
s

-
s
-
.
h
r

st
r-
y
on
to

n
-

n-
r
h-

out it and no selection with inbreeding and without it—w
have found a critical value of the initial concentration~MVP!
below which the population has a very small chance of s
vival. The same kind of behavior has been found in r
biological systems@16–18#.

The survival probability in our model depends also on t
size of the habitat. For quite small sizes no population c
survive, irrespective of its initial concentration. In gene
the chances for survival grow with increasing size of t
habitat. This phenomenon is well known in biology and w
described by MacArthur and Wilson as long ago as 19
@20#.

The role of selection pressure is indeed crucial. Witho
selection, a population whose size is initially declining w
surely die, because the concentration monotonically chan
with time in that case. In contrast, when a population evol
under selection pressure, after an initial decrease of the
centration, it is possible, although not guaranteed, that
population size will grow. This is caused by an increase
the mean fitness, as was shown in Sec. III. Thus we can
that selection can ‘‘save’’ the population, a fact also su
gested by biologists@18#.

Inbreeding reduces the population’s chance for survivi
It leads to clustering of individuals, which in our mod
makes breeding more difficult. This again is a very we
known biological fact@14#. Since we did not introduce an
environmental changes, which can be easily done by cha
ing the optimal phenotypeOF @7#, we did not observe in the
case of inbreeding extinction caused by decrease of the
netic diversity as, e.g., in@24–26#.
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